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a b s t r a c t

Response surface methodology (RSM) relies on the design of experiments and empirical modelling tech-
niques to find the optimum of a process when the underlying fundamental mechanism of the process is
largely unknown. This paper proposes an iterative RSM framework, where Gaussian process (GP) regres-
sion models are applied for the approximation of the response surface. GP regression is flexible and
capable of modelling complex functions, as opposed to the restrictive form of the polynomial models
that are used in traditional RSM. As a result, GP models generally attain high accuracy of approximating
the response surface, and thus provide great chance of identifying the optimum. In addition, GP is capable
of providing both prediction mean and variance, the latter being a measure of the modelling uncertainty.
Latin hypercube sampling
Optimization
Response surface methodology

Therefore, this uncertainty can be accounted for within the optimization problem, and thus the process
optimal conditions are robust against the modelling uncertainty. The developed method is successfully
applied to the optimization of trans-stilbene conversion in the epoxidation of trans-stilbene over cobalt
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. Introduction

Response surface methodology (RSM) is a family of statistical
echniques for the design, empirical modelling and optimization of
rocesses, where the responses of interest are influenced by several
rocess variables (termed factors) [1,2]. RSM comprises the follow-

ng three major components: (i) experimental design to determine
he process factors’ values based on which the experiments are
onducted and data are collected; (ii) empirical modelling to
pproximate the relationship (i.e. the response surface) between
esponses and factors; (iii) optimization to find the best response
alue based on the empirical model. In addition, the above three-
tage procedure is typically operated in an iterative manner, where
he information attained from previous iterations is utilized to
uide the search for better response variables. This iterative explo-
ation of experimental space has been adopted and applied in
arious model-based process optimization methods, such as those
sing genetic algorithms [3–5], and “active sampling” [6] that was
riginally developed in the machine learning society [7]. RSM is

articularly applicable to problems where the understanding of the
rocess mechanism is limited and/or is difficult to be represented
y a first-principles mathematical model. Depending on specific
bjectives in practice, these RSM techniques differ in the experi-
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mental design procedure, the choice of empirical models, and the
mathematical formulation of the optimization problem.

An appropriate design of experiments (DoE) is the pre-requisite
for a successful experimental study. The classical fractional facto-
rial and central composite designs were proposed to investigate
the interactions of process factors based on polynomial models
[2]. These classical designs typically assign two or three pre-
determined levels for each process factor, and experiments are
conducted at the combination of the levels of different factors.
Using a small number of levels is especially appealing if the factors’
values are difficult to change in practice. However, this strategy
may not have an optimal coverage of the design space due to lim-
ited levels of the factors being studied, and thus it may result in
a less reliable empirical model [8]. The recognition of this disad-
vantage of classical DoE methods has motivated the concept of
“space-filling” designs that allocate design points to be uniformly
distributed within the range of each factor [8–10]. Among this class
of designs, the Latin hypercube sampling (LHS) [9] is probably the
most widely adopted method as a result of its simple implemen-
tation and good performance. For this reason, LHS is a preferred
method in practice, and it is adopted for experimental design in
this study. There has been considerable effort to improve the LHS to

obtain more uniform design points [8,10] although improving the
uniformity is at the expense of significantly higher computation.

After experimental data are collected according to the design
points, the next step of RSM is to develop an empirical model for
the response surface. The traditional method is to fit a polyno-

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
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ial function (typically linear, quadratic or cubic polynomial) to
he data, followed by identifying the factor values that optimize
he objective function. However, the prediction accuracy of the
mpirical model is usually unsatisfactory when using polynomial
unctions, and consequently the identified optimum is unreliable.
o address this issue, artificial neural network (ANN) was proposed
o provide a more accurate approximation of the response surface,
nd it was demonstrated to give improved optimization results in
arious applications [11–16]. More recently, ANN has been com-
ined with other methods, such as genetic algorithm, principal
omponent analysis and clustering analysis, for modelling, anal-
sis and optimization of various catalysis systems [3–5,17–19]. An
lternative approach is support vector machine (SVM) that belongs
o the family of kernel modelling methods [20]. SVM employs

structural risk minimization scheme to improve the prediction
ccuracy, and it has been successfully applied to predictive mod-
lling of catalysis processes [21,22] and other chemical systems
23].

The primary purpose of this study is to apply Gaussian pro-
ess (GP) regression as the empirical model for RSM. GP models
ave recently received considerable attention in process systems
ngineering and chemometrics [24–26]. GP can be viewed as an
lternative approach to ANN because a large class of ANN-based
ayesian regression models converge to GP in the limit of an infinite
etwork [27]. GP models can also be derived from the perspec-
ive of Bayesian regression [28], by directly placing Gaussian prior
istribution over the space of regression functions. The fact that
P models attain both good practical performance and desirable
nalytical properties motivates the current work, where the poly-
omial function or ANN is replaced by GP for process optimization.

n addition to prediction accuracy, GP models are also known for
he capability of providing reliable prediction variance, which mea-
ures the uncertainty of the studied model, i.e. the degree to which
he model is not sure about its prediction [27–29]. As a conse-
uence, the model-based optimization problem can be formulated
o account for the uncertainty, and the identified optimal process
actors are expected to be more robust against modelling uncer-
ainty. The major contribution of this work is twofold. First, we
ropose the application of GP, in place of traditional polynomial
egression and ANN, for process modelling so that the model uncer-
ainty can be handled. Second, we extend previous non-iterative
P-based RSM [30,31] to an iterative approach, whereby the GP
odel is used to help search for the best process performance incre-
entally. In this sense, the proposed approach falls in the category

f “active sampling” methods to iteratively allocate experiments
ith the aid of a model to explore the design space, so that the

ptimal process conditions are identified [6,7].
In a broader literature, GP regression has been applied to

echanical system optimization [30], and notably used as “meta-
odel” for the optimization of complex functions and computer
odels [31–33]. The predictive uncertainty obtained by GP was

tilized in various ways. Apley et al. [31] considered a “worst-case
cenario” and proposed to maximize the statistical lower-bound.
ore elegant criteria were discussed by Jones [32] to optimize

he “probability of improvement” or “expected improvement”. As
he name suggests, metamodel is to approximate another complex
omputer model using a GP, whilst in the current study we are con-
erned with approximating and optimizing a real chemical process.
lthough the methodology for optimizing a computer model and a
eal process is largely similar, there is a salient distinction between
hem. Specifically, computer model itself is an approximation of

he real process. As a result, in order to apply the optimal condi-
ions obtained from a complex model to a real process, additional
ncertainty resulting from the mismatch between the computer
odel and reality has to be accounted for; see [29] for a comprehen-

ive discussion on this matter. In this paper, we restrict our scope
Journal 156 (2010) 423–431

to the development of RSM for the optimization of real chemical
processes.

Of particular interest in this study is the catalytic oxidation
process that converts trans-stilbene into stilbene oxide using
molecular oxygen as the oxidant. Stilbene oxide is a commer-
cially important intermediate used in the synthesis of various fine
chemicals and pharmaceuticals. Conventionally, stilbene oxide is
produced using organic peracid as an oxidant or by a chlorohydrin
process, and a large amount of chemical waste is formed [34]. As a
consequence, it is desired to exploit molecular oxygen or air as oxi-
dant for stilbene epoxidation from the environmental, safety and
economic considerations. Recently, cobalt ion-exchanged faujasite
zeolite (Co2+–NaX) has been reported as an efficient heterogeneous
catalyst for the epoxidation of trans-stilbene using O2 in the absence
of co-reductant [35,36]. These reports focused on the synthesis
of catalyst and catalytic performances; studies on the process of
the epoxidation are limited. Therefore, it is of great importance to
optimize the existing catalytic oxidation process, through investi-
gating the effect of the process factors on the overall performance
(response).

Traditionally, heterogeneous catalysis research heavily relies on
tedious experimental studies, screening a large number of pro-
cess factors that may affect the reaction performance. Despite
the wide acceptance of RSM in various scientific disciplines, the
usual “one-factor-at-a-time” approach is still common in cataly-
sis research. That is, one factor is varied each time, with others
being fixed, to investigate individual factor’s influence on pro-
cess performance. This “one-factor-at-a-time” method ignores the
interactions between different factors, and has long been criticized
of having little chance (if any) of finding the optimal conditions
[3–6,11–19,37]. As a consequence, the current work serves a dual
purpose: to propose a novel GP-based RSM framework, and to
demonstrate/validate its application in an important catalytic reac-
tion process.

A remarkable advance in recent catalysis research is the emer-
gence of high-throughput experimentation (HTE) that is capable
of conducting hundreds of experiments within a relatively short
period of time [38,39]. Given the large amount of data, a proper
DoE and data-based modelling methodology is crucial to guide the
search for optimal catalysts. Some afore reviewed computational
procedures, such as ANN, SVM and their combination with genetic
algorithm, have been adopted and adapted to aid catalyst design
[4,17,18,40–42]. In this paper, we will focus on the situation where
HTE is not available, as is the case in many traditional laboratories
or industrial processes, and thus a relatively small amount of data
can be collected. Previous studies have suggested that when data
are limited, GP regression models are especially superior to other
techniques in terms of prediction accuracy [43].

Another related field where data-based modelling is widely
applied is quantitative structure activity and property analysis (QSAR
and QSPR). Originally emerged from drug discovery, QSAR/QSPR
aims to relate the structural descriptors of certain molecules to
their effectiveness in curing certain diseases. In the context of
heterogeneous catalysis, the descriptors typically include catalyst
composition, tabulated physico-chemical properties, and catalyst
synthesis and reaction conditions [44]. Given such large number
of descriptors (up to several thousand), HTE is typically needed to
obtain sufficient data for a reliable analysis, and thus this topic is
outwith the scope of the current study.

The rest of this paper is organized as follows. Section 2 gives a
brief description of the catalytic trans-stilbene oxidation process.

Section 3 presents the proposed RSM framework, including four
major components: the LHS method for experimental design, the
GP model for approximating the response surface, model-based
“region-searching” (to be presented subsequently) and model-
based optimization. To facilitate the adoption of the proposed
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ethodology, the software tools to implement the RSM framework
re either made freely available (if written by the authors) or iden-
ified through relevant links. Results and discussions are given in
ection 4, followed by concluding remarks in Section 5.

. Experimental

In this study, a lab-scale catalytic reaction is utilized as a test-
ed to validate the proposed RSM technique. Specifically, we are

nterested in maximizing the trans-stilbene conversion rate in the
poxidation of trans-stilbene over Co2+–NaX catalyst using molec-
lar oxygen as the oxidant. Five process factors are considered:
eaction temperature, partial pressure of oxygen, initial trans-
tilbene concentration, stirring rate and reaction time. The range
f these factors to be explored is listed in Table 1.

Sodium form Zeolite X (NaX) was purchased from
igma–Aldrich. Unit cell composition of NaX was Na88Al88Si104O384
ith unit cell dimension of 24.94 Å. The BET surface area of the

eolite was 608 m2 g−1. Cobalt-exchanged zeolite (Co2+–NaX) was
repared by ion-exchange of the NaX with 0.1 M Co(NO3)2 aqueous
olution with 1:80 ratio of NaX zeolite to Co(NO3)2 followed by
eating at 80 ◦C for 4 h. The resulting powder was filtered and
ashed with deionized water until it is free from unexchanged

obalt ions. The washed Co2+–NaX sample was dried at 100 ◦C for
h.

The liquid phase catalytic trans-stilbene epoxidation reactions
ere carried out using a batch-type reactor operated under atmo-

pheric pressure. In a typical reaction, a measured amount of
rans-stilbene (>96%, Aldrich), 200 mg of Co2+-X catalyst, and 15 ml
f N,N-dimethylformamide (DMF, >99.8%, J.T.Baker) were intro-
uced into a 50 ml round-bottomed flask followed by bubbling O2
r O2 diluted with N2 into the liquid at a flow rate of 50 ml min−1.
he reaction was initiated by immersing the round bottom flask
nto an oil bath under desired reaction temperature. The solid
atalyst was filtered off after reaction, and the liquid organic prod-
cts were analyzed by an Agilent gas chromatograph (GC) 6890
quipped with a HP-5 capillary column (30 m long and 0.32 mm in
iameter, packed with silica-based supel cosil). Calibration of GC
as done using solutions with known amounts of benzaldehyde,

enzoic acid, stilbene, and stilbene oxide in DMF. The conversion
as calculated on the basis of moles of stilbene as follows:

onversion (%) = (initial moles) − (final moles)
(initial moles)

× 100% (1)

During experimentation, the process factors were accurately
ontrolled to minimize the process variability. In addition, the
o2+–NaX catalyst used in the experiments was from the same
atch to avoid variation due to catalyst preparation procedure. As a
esult, our preliminary study showed that by conducting multiple
xperiments at the same value of the process factors, the standard
eviation of the conversion rates is typically within 1%. Therefore,

he process variability does not significantly affect the response and
ill not be considered further. In a more practical scenario where

he factors and/or catalysts cannot be closely controlled, robust
esign and optimization methodology would be needed, which is
n interesting future research direction.

able 1
ange values of process factors considered to maximize stilbene conversion (%).

Process factor Range of values

Temperature, x1 (◦C) 60–120
Partial pressure of oxygen, x2 (Bar) 0.2–0.8
Initial stilbene concentration, x3

(mmol/15 mL)
1–5

Stirring rate, x4 (rpm) 200, 300, 400, 500, 700, 1000, 1250
Reaction time, x5 (min) 30–240
Journal 156 (2010) 423–431 425

3. Response surface methodology using Gaussian processes

The proposed RSM framework is operated in an iterative manner
and is summarized step by step as follows.

Step 1: Use LHS to obtain design points that are uniformly dis-
tributed over the entire factor space.

Step 2: Conduct experiments at the design points, and collect the
response data.

Step 3: Develop a GP regression model, using all the experimental
data collected up to the current iteration, to approximate
the response surface.

Step 4: If this is NOT the final iteration

Then:

(a) Find the region of factors that is predicted (using the GP model)
to give a better response variable.

(b) Use LHS to allocate design points that are uniformly distributed
over this region, and go to Step 2 for the next iteration.

Else:

(c) Solve the mathematical optimization problem based on the GP
model to obtain the optimal values of the process factors.

(d) Conduct final experiment(s) to validate the optimal conditions.

In the initial iteration, little knowledge is available regarding the
factors’ values for desirable response variables, and thus LHS will be
used to uniformly fill the entire factor space with designed points
(Step 1). At Step 2, actual experiments will be conducted carefully
at the design points to obtain the corresponding response variables,
followed by Step 3 to develop a GP model to approximate the rela-
tionship between the response and process factors. In Step 4, if this
is not the final iteration, a model-based approach is used to identify
the region of factors that is more likely to produce better responses
(Step 4(a)), followed by using LHS to generate design points within
this region for experiments in next iteration (Step 4(b)). Step 4(a)
is referred to as “region-searching” in this paper. After several iter-
ations of this procedure, the factor space has been well explored
and no more iterations are needed. In this case, Step 4 is to use a
model-based optimization approach to obtain the optimal values
of the process factors (Step 4(c)), followed by the final experiment
to validate the optimal conditions (Step 4(d)).

Conceptually, this iterative procedure is similar to the tra-
ditional catalyst screening practice. However, the conventional
methods search for region-of-interest purely based on experimen-
tal data and intuition [44]. In contrast, the proposed strategy takes
advantage of a GP model to predict a better region of factor’s values.
Therefore, RSM is a rational, as opposed to trial-and-error, approach
to process optimization. We discuss each individual step within an
iteration in more detail below.

3.1. Experimental design through Latin hypercube sampling

The key objective of DoE is to select the values of process factors
in such a way that the obtained experimental data are representa-
tive of the design space being explored and informative to predict
the process responses. This section presents a specific DoE method,
Latin hypercube sampling (LHS) [9], and its incremental algorithm.

LHS is a special “space-filling” DoE method that selects the fac-

tors’ values to be uniformly distributed. As a result, the data will
be more representative of the entire design space than the classi-
cal factorial and central composite designs. It was shown that LHS
is more efficient than randomly generating the uniform samples
from the design space. For the same number of design points, the
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odelling and estimation accuracy of LHS is substantially better
han those of random sampling [9]. Specifically, let Rk (k = 1,. . .,K)
e the range of values of factor k and N be the number of design
oints to be generated. The first step of LHS is to divide the range
f each factor k, Rk, into N equally spaced intervals, followed by
niformly sampling from each interval to result in N values for this
actor: xkj, j = 1,. . .,N. Subsequently, these N values are randomly
ermuted to have a better coverage of the design space. This pro-
edure is repeated for all the K process factors to attain K × N values:
kj, k = 1,. . .,K, j = 1,. . .,N, which form the N design points, each being
dimensional. More details of LHS can be found in [9]. The LHS

lgorithm has seen applications in various disciplines, partly due
o its relatively simple implementation and its wide availability in
tatistical software packages (e.g. Statistical Toolbox for Matlab).

The capability to incrementally increase the design points is
learly a desired property of LHS, and other DoE methods, since
SM is often conducted iteratively. A straightforward approach is to
pply the LHS algorithm multiple times to add more design points
ithout any consideration of previous data. However, although

HS guarantees that each set of points are located in the equally
paced N intervals at each dimension, the entire data set does not
ecessarily cover the design space uniformly. We illustrate this
henomenon in Fig. 1 in which a single process factor is consid-
red. Initially, two design points are generated and located in two
qually spaced intervals (Fig. 1(a)), followed by adding two more
esign points. If these two new data are generated by repeating
HS algorithm, it only guarantees that the new points are sep-
rately located in the original two intervals; however, they can
e close to the original data and thus undesirable (Fig. 1(b) and
c)). To address this issue, we adopt a simple but efficient incre-

ental approach for LHS [45]. Suppose N1 design points were
reviously generated by LHS and N2 additional points are required,
he incremental algorithm divides the range of each factor into
N1 + N2) equal intervals. Clearly, at least N2 of the intervals do
ot contain any previous data. It is possible that there are more
han N2 empty intervals due to more than one data point falling
nto the same interval. Therefore, we randomly select N2 empty
ntervals and generate a random sample from each of them. The
bove procedure is repeated for each factor to attain N new
2
esign points. Note that the incremental algorithm does not guar-
ntee that all (N1 + N2) design points are allocated into (N1 + N2)
qually spaced intervals because some intervals may not be occu-
ied if there are more than N2 empty intervals. Nevertheless, this

ig. 1. Illustration of incremental LHS using one design factor within the range of
0 1]. (a) Two initial design points (denoted by “×”) generated by LHS. (b) Two addi-
ional design points (denoted by “o”) generated by one more run of LHS; they are
lose to the initial points and do not provide desired overall coverage of the range.
c) Two additional design points (denoted by “o”) generated by incremental LHS.
Journal 156 (2010) 423–431

algorithm is a fast and efficient way to obtain significantly better
coverage of the design space than repeated LHS. A Matlab imple-
mentation of the incremental LHS algorithm is available from:
http://www.ntu.edu.sg/home/chentao/.

3.2. Gaussian process regression modelling

The idea of Gaussian process (GP) can be dated back to the
classical statistical method by O’Hagan [46]. However, the appli-
cation of GP as a regression (and classification) technique was not
common until late-1990s, when the rapid development of com-
putational power facilitated the implementation of GP for large
data sets. Recently, GP models have seen successful applications in
various fields, including chemometric calibration of spectrometers
[24], chemical process modelling [25,47], prediction of biological
binding affinities [26], and mechanical system modelling and opti-
mization [30]. In this subsection, a brief overview of GP regression
technique is given, including the formulation and implementation
of the model.

From the perspective of a regression problem, a functional rela-
tionship is identified between the K dimensional predictor variables
(factors), x, and the response y. Consider a training data set of size
N: {xi, yi; i = 1,. . .,N} that was obtained by conducting experiments
on the designed points. A GP regression model is defined such that
the regression function y(x) has a Gaussian prior distribution with
zero mean, or in discrete form:

y = (y1, . . . , yN)T∼G(0, C) (2)

where C is an N × N covariance matrix of which the ijth element is
defined by a covariance function: Cij = C(xi,xj). An example of such
a covariance function is:

C(xi, xj) = a0 + a1

K∑
k=1

xikxjk + v0 exp

(
−

K∑
k=1

wk(xik − xjk)2

)

+ �2ıij (3)

where xik is the kth variable of xi, and ıij = 1 if i = j, otherwise ıij = 0.

We term � = (a0, a1, v0, w1, . . . , wK , �2)
T

“hyper-parameters”
defining the covariance function. The hyper-parameters must be
non-negative to ensure that the covariance matrix is non-negative
definite. For the covariance function given in Eq. (3), the first two
terms represent a constant bias (offset) and a linear correlation
term, respectively. The exponential term is similar to the form of
a radial basis function, and it takes into account the potentially
strong correlation between the responses with similar predictors.
The term �2 captures the random error effect. By combining both
linear and non-linear terms in the covariance function, GP is capable
of handling both linear and non-linear data structures [24]. Other
forms of covariance functions are also discussed [28].

For a new data point with predictor vector x*, the predictive
distribution of the output y* conditional on the training data is also
Gaussian, of which the mean (ŷ∗) and variance (�2

ŷ∗ ) are calculated
as follows:

ŷ∗ = kT(x∗)C−1y (4)

�2
ŷ∗ = C(x∗, x∗) − kT(x∗)C−1k(x∗) (5)

where k(x∗) = [C(x∗, x1), . . . , C(x∗, xN)]T.
The hyper-parameters � can be estimated by maximizing the

following log-likelihood function:
L = log p(y|�, X) = −1
2

log|C| − 1
2

yTC−1y − N

2
log(2�) (6)

This is a non-linear optimization problem which can be solved
by using gradient-based methods, e.g. the conjugate gradient

http://www.ntu.edu.sg/home/chentao/
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ethod [28]. These methods require to calculate the derivative of
og-likelihood with respect to each hyper-parameter �, which is:

∂L

∂�
= −1

2
tr

(
C−1 ∂C

∂�

)
+ 1

2
yTC−1 ∂C

∂�
C−1y (7)

here ∂C/∂� can be obtained from the covariance function. A Mat-
ab implementation of the GP models is publicly available from
ttp://www.gaussianprocess.org/gpml/code/matlab/doc/, and it
as used to produce the results in this study.

It should also be noted that the calculation of the likelihood and
he derivatives involves a matrix inversion step and takes time of
he order O(N3), which can be extremely demanding for large data
et. Fortunately in the context of RSM, the experiments are costly
o run, and the available data are normally limited and should not
ose a computational problem for GP modelling. In addition, for

arge data sets, sparse training strategies may be employed to sig-
ificantly reduce the computational cost [48].

.3. Model-based region-searching

The GP model that relates the process response y to the factors x
rovides the basis to guide the search for more promising process
actors, referred to as “region-searching” in this study. Once a bet-
er region of factors is identified, the LHS method will allocate new
esign points to this region for next-iteration experiments. In this
tage, model robustness emerges as an issue because of the predic-
ive errors (and thus uncertainty) that are inevitable when using
statistical regression model. The predictive uncertainty must be

onsidered and accounted for in order to identify a trustworthy
ptimal region. Fortunately, GP models are capable of giving the
ncertainty (through variance) of the prediction in addition to a
ean predicted value, and the uncertainty should be incorporated

nto the region-searching method.
In this paper the worst-case scenario is considered to deal with

he prediction uncertainty. Suppose the objective is to maximize
he response variable, we instead maximize the lower-bound of the
esponse predicted by the GP model. Similar approach was adopted
n [31] for the optimization of computer simulation of mechanical
ystems. Mathematically we seek to obtain the region of process
actors defined by:

x : ŷ(x) − 1.645�y(x) > c and �y(x) > b and x ∈ S} (8)

here ŷ(x) and �y(x) are the predictive mean and standard devia-
ion obtained from the GP model (Eqs. (4) and (5)), respectively, and
denotes the range of the process factors as given in Table 1. Since

he prediction from GP is Gaussian distributed, ŷ(x) − 1.645�y(x)
orresponds to the 95% lower-bound of the prediction, and c is a
ser-chosen value. Essentially, this is to search for the factors such
hat the 95% lower-bound of the response is greater than c. Further-

ore, the constraint �ŷ(x) > b is to avoid allocating design points
o well-explored region, where the GP model is quite certain about
ts prediction (i.e. with small �y(x)) and thus further experiments
n this region are not necessary. The proper value of b and c should
e adjusted at each iteration based on the information from exper-

mental data. The specific choice of b and c in this study will be
iscussed in the next section.

Clearly there are an infinite number of design points that satisfy
q. (8). Hence the region-searching essentially becomes a con-
trained DoE problem, where the factors’ values are selected to
e uniformly distributed in the constrained space that is defined

y Eq. (8). This constrained DoE problem can be solved as follows.
uppose from previous iterations, N design points were used and
he experiments were conducted, and now N1 new design points
re to be generated. Then we can generate N1 design points using
ncremental LHS algorithm (discussed in Section 3.1), and find the
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points such that Eq. (8) holds. Suppose n out of N1 points satisfy this
constraint, and thus we can further generate N1 − n design points
using incremental LHS. This procedure is repeated until a total of
N1 design points satisfy the above constraint, and these points are
selected for the experiments in next iteration. The proposed proce-
dure is an effective solution to the constrained DoE problem, since
the incremental LHS algorithm ensures a uniformed distribution of
the design points within the entire factors’ range (x ∈ S), and thus
the points selected will also be uniformly distributed within the
region given by Eq. (8).

3.4. Model-based optimization

Once the factors’ space is well explored through several iter-
ations of the RSM technique, the final step is to conduct the
optimization of the response variable. Similar to region-searching
step, the optimization problem is formulated to maximize the 95%
lower-bound of predicted response variable, subject to the con-
straint on the factors’ range (x ∈ S):

max
x

(ŷ(x) − 1.645�y(x)) s.t.x ∈ S (9)

If process factors take continuous values within the range,
classical algorithms (e.g. sequential quadratic programming and
trust-region method) for solving non-linear constrained optimiza-
tion problem can be used [49]. However, in practice Eq. (9) is
typically a mixed-integer optimization problem, i.e. continuous
process factors are coupled with categorical and discrete (or inte-
ger) factors. For example in the reactor available in our laboratory,
the stirring rate is fixed to seven different values (200, 300, 400, 500,
700, 1000 and 1250 rpm, see Table 1) due to instrument constraint,
and thus the stirring rate can only take a discrete set of values. When
a subset or all of the process factors are discrete, more advanced
methods are needed, such as genetic algorithms [3–5] and branch-
and-bound method [49]. Note that these advanced methods are
also applicable for optimizing continuous factors. In this study, a
branch-and-bound algorithm was developed under Matlab com-
putational environment. A comprehensive optimization toolbox for
Matlab (i.e. TOMLAB: http://tomopt.com/tomlab/) is commercially
available and could also be used for solving this problem.

4. Results and discussions

This section demonstrates the application of the proposed RSM
framework for the optimization of stilbene conversion of a catalytic
oxidation process. In the initial iteration, the knowledge about the
process is relatively limited, and the LHS algorithm is used to obtain
20 design points within the whole range of five factors for exper-
iments. The designs and corresponding stilbene conversion rates
are given in Table 2.

Following the reaction experiments, the response surface is
approximated by a GP model. Before the model is applied for sub-
sequent region-searching or optimization purpose, its predictive
capability should be assessed by the well-known cross-validation
procedure [14,18,21,22]. In this study, we adopt the method of
leave-one-out cross-validation (LOOCV) [50] to validate the GP
regression model. LOOCV takes a single data point from the entire
data set as the validation data, and then develop a GP model using
the remaining data points. Hence the error for the validation data
can be calculated. This procedure is repeated such that each data

point is used once for validation, and the overall validation error
(typically in terms of root mean squared error (RMSE) or coeffi-
cient of determination (R2)) is used as the criterion to assess model
quality. In addition, to consider the effect of prediction uncertainty,
we also use the average negative log predictive density (NLPD) [51]

http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://tomopt.com/tomlab/
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Table 2
Designed experiments and resultant stilbene conversion y (%): the first iteration.

Run No. x1 x2 x3 x4 x5 y

1 73 0.62 3.25 1250 162 1.42
2 107 0.41 4.95 1000 182 18.95
3 110 0.65 1.95 700 76 13.31
4 118 0.79 1.25 300 112 42.78
5 88 0.76 2.95 500 152 6.72
6 68 0.33 4.50 400 238 1.52
7 71 0.37 2.65 200 198 1.75
8 91 0.21 4.25 1250 228 9.50
9 104 0.57 1.65 300 126 20.13

10 76 0.28 3.50 500 138 1.99
11 84 0.47 1.95 400 200 9.54
12 98 0.71 2.25 700 40 4.00
13 115 0.55 1.45 200 214 55.00
14 102 0.35 2.80 1000 42 4.00
15 93 0.49 3.30 200 178 9.49
16 81 0.72 3.90 700 64 1.08

d
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q
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17 113 0.30 1.15 1250 50 12.02
18 78 0.54 4.65 400 146 1.88
19 63 0.67 2.50 500 90 0.01
20 96 0.25 3.80 300 98 5.63

efined by:

LPD = − 1
N

N∑
i=1

log p(ŷ(xi) = yi|xi) (10)

o assess the prediction performance. When prediction is Gaussian
istributed with mean ŷ(xi) and variance �2

ŷ
(xi), p(ŷ(xi) = yi|xi) cor-

esponds to the calculation of a normal density function with mean
ˆ(xi) − yi and variance �2

ŷ
(xi). NLPD reaches its minimum if all pre-

ictions are equal to the true value and the predictive variances
re zero. It was shown [51] that given a prediction, the optimal
ariance is the squared error of the prediction mean. Therefore,
LPD penalizes both over-confident (small variance) and under-
onfident (large variance) predictions, and it is a reliable criterion
o quantify the prediction quality under uncertainty.

For the purpose of comparison, a conventional multiple
uadratic polynomial regression model with stepwise variable

election is also developed [37]. Fig. 2 gives the prediction results
f LOOCV for both GP and quadratic regression model. Clearly, the
P model (RMSE = 5.42, R2 = 0.85, NLPD = 6.07) has attained signif-

cantly higher prediction accuracy than the quadratic regression
RMSE = 7.66, R2 = 0.70, NLPD = 8.52). A final GP model is then devel-

ig. 2. Prediction results (the first iteration) using leave-one-out cross-validation
or GP (RMSE = 5.42, R2 = 0.85, NLPD = 6.07) and quadratic regression (RMSE = 7.66,
2 = 0.70, NLPD = 8.52) models.
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oped from all the available data, and this model will be used for
either region-searching or optimization subsequently.

Table 2 and Fig. 2 also indicate that most experiments did not
result in satisfactory conversion rate of stilbene. Indeed, only four
experiments attained conversion rates higher than 15%. Therefore,
it may be premature to claim that the optimal region has been
well identified for process optimization. However, these experi-
ments do provide important information as to which region of
the factors’ space is more promising to improve the conversion
rate. Following the region-searching algorithm presented in Sec-
tion 3.3, we search for a new set of design points x such that the 95%
lower-bound prediction from the GP model is sufficiently large (i.e.
ŷ(x) − 1.645�ŷ(x) > c) and the prediction uncertainty is also large
(�ŷ(x) > b). The choice of b and c is subject to the experimenter’s
discretion. Based on the experimental results obtained in iteration
1, it may be reasonable to set c = 15%, in the hope to explore the
factors’ region with conversion higher than 15%. In addition, we
set b to be the average standard deviation of predictions in the
LOOCV procedure, so that to generate design points that are not
well predicted by the current model. Based on these choices, the
incremental LHS algorithm generates a new set of 20 design points
as shown in Table 3, which also lists the conversion rates obtained
through reaction experiments.

A comparison between Tables 2 and 3 confirms that the RSM
framework has successfully identified more promising region of the
process factors. On average, the conversion rate of the 20 experi-
ments in Table 3 is 34.76%, which is a dramatic improvement over
the average conversion of 11.04% in Table 2. The maximal conver-
sion achieved in Table 3 is 61.05%, as opposed to 55.00% in Table 2.
In addition, recall that the objective of the region-searching in itera-
tion 1 is to find the process factors with conversion higher than 15%.
This objective has been fulfilled for most experiments in Table 3,
except the 15th and 17th runs (conversion rate of 7.52% and 12.29%,
respectively). Therefore, it appears that the GP model is reasonably
reliable for predicting the process response variable.

In principle, the RSM can be iterated multiple times as required,
and the number of iterations should be decided by the experienced
experimenters after careful examination of the results. The pri-
mary purpose of the present study is to demonstrate and validate
the proposed RSM framework, and thus the number of iterations

is restricted to two. Indeed, the specialists in catalytic reactions
also feel that the identified factors in Table 3 may be close to the
optimal condition achievable given the current experimental envi-
ronment.

Table 3
Designed experiments and resultant stilbene conversion y (%): the second iteration.

Run No. x1 x2 x3 x4 x5 y

21 112 0.73 1.83 200 174 38.07
22 119 0.40 4.17 300 158 18.47
23 116 0.22 2.12 1000 139 27.75
24 118 0.42 1.09 1250 147 59.28
25 119 0.48 4.10 200 221 28.99
26 120 0.21 1.01 500 133 31.90
27 106 0.54 2.18 700 236 42.40
28 113 0.80 3.42 500 203 28.10
29 115 0.63 3.93 200 185 23.18
30 112 0.61 1.54 1250 136 44.45
31 119 0.65 1.73 300 180 61.05
32 113 0.60 2.26 1250 129 30.29
33 116 0.70 2.47 700 200 56.53
34 110 0.69 4.28 400 161 15.79
35 117 0.20 4.98 200 219 7.52
36 104 0.45 1.42 1250 166 35.97
37 109 0.28 4.54 400 202 12.29
38 109 0.48 1.67 1000 239 59.04
39 120 0.57 2.87 300 223 51.47
40 119 0.31 1.19 700 79 22.64
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ig. 3. Prediction results (the second iteration) using leave-one-out cross-validation
or GP (RMSE = 3.77, R2 = 0.96, NLPD = 3.06) and quadratic regression (RMSE = 5.31,
2 = 0.92, NLPD = 3.60) models.

To enable the optimization in the final iteration, a new GP
egression model is required to approximate the response surface,
sing all the 40 data points available in Tables 2 and 3. Again,
he LOOCV approach is employed to assess the prediction capa-
ility of GP and conventional quadratic regression models, and the
rediction results are shown in Fig. 3. With more data available
n iteration 2, the prediction accuracy of both GP and quadratic
odels has been improved in comparison with iteration 1. Adding
ore data typically has significant effect on reducing the prediction

rror in RSM, since initially the data are very limited. However,
ue to the time and cost associated with experiments, it may be

Fig. 4. The response surface of conversion as a function of temperature and (a) oxyg
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unrealistic to request a large amount of experimental data to be
collected in the process design and development stage. There-
fore, advanced modelling approaches should be utilized if they
can provide more accurate predictions than conventional meth-
ods on the same amount of data. Fig. 3 indicates that, again, the
GP model (RMSE = 3.77, R2 = 0.96, NLPD = 3.06) is superior to the
quadratic regression (RMSE = 5.31, R2 = 0.92, NLPD = 3.60) in terms
of lower RMSE, higher R2 value and lower NLPD values. Further-
more, a paired t-test on absolute prediction errors gives a p-value
of 0.006, indicating that the improved accuracy of GP is statistically
significant.

Based on the finally developed GP model from all the 40 exper-
imental data, the optimization problem defined in Eq. (9) is solved
using branch-and-bound algorithm. The optimal process condi-
tion is found to be: x1 = 120 ◦C (temperature), x2 = 0.63 bar (partial
pressure of oxygen), x3 = 1.00 mmol/15 mL (initial stilbene con-
centration), x4 = 1250 rpm (string rate), and x5 = 120 min (reaction
time), and the GP model predicts the conversion rate to be 94.51%.
The actual experiment at this claimed optimal condition attains a
conversion rate of 93.45%, which is reasonably close to the pre-
dicted value and is regarded as satisfactory under the current
constraints of experiments.

Besides searching for the optimal process conditions, one impor-
tant task of RSM is to understand how the process factors influence
the response variable, which can be visualized by the response
surface plots as given in Fig. 4. In each plot we illustrate the con-
version rate against two process factors, and thus a total of 10 plots
would be needed to present the combinations of every two fac-
tors. For demonstration purpose, Fig. 4 only includes four plots

to consider the effect of temperature and other four factors. The
response surfaces were obtained by calculating the response of
the final GP model through varying the two factors within their
range, whilst keeping other three factors to have the optimal val-
ues as given in the previous paragraph. It should be noted that it

en pressure, (b) stilbene concentration, (c) stirring rate, and (d) reaction time.
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s possible to illustrate a high dimensional response surface using
wo-dimensional plots, such as the holographic map adopted in
6,41].

Fig. 4 clearly indicates the trend of the stilbene conversion as a
unction of process factors. Within the range under study, it appears
hat higher temperature, faster stirring rate and longer reaction
ime lead to better conversion, which is consistent with our chem-
cal intuition. Indeed, the identified optimal condition for these
hree factors corresponds to their maximum value within the range
refer to Table 1 for the factors’ range). In contrast, lower initial stil-
ene concentration results in better conversion rate, since a smaller
mount of stilbene needs to be converted and thus the optimal con-
ition for this factor is at its minimum value of 1.00 mmol/15 mL.
inally, Fig. 4(a) shows that the conversion rate increases when oxy-
en pressure increases from 0.20 bar to approximately 0.63 bar, and
hen decreases with further increase in the pressure. The identified
ptimal oxygen pressure is 0.63 bar.

. Conclusions

This study has proposed an iterative RSM framework for the
odelling and optimization of a chemical reaction process. The

ey component of this proposed framework is a novel statistical
pproach, i.e. GP regression, which is used as the empirical model
or RSM. Compared with traditional regression methods, GP mod-
ls have been demonstrated to attain the capability of providing
igh prediction accuracy and reliable prediction uncertainty. The
esirable properties of GP model are the basis for model-based
ange-searching and optimization in the iterative framework.
he proposed methodology has been successfully applied to the
ptimization of trans-stilbene epoxidation over Co2+–NaX cata-
ysts.

It appears that the response surface of the demonstrated
atalytic epoxidation process is relatively smooth and simple.
n principle, GP regression is also capable of modelling com-
lex response–factor relationship, provided sufficient data are
vailable. In addition, a complex surface may have many local
ptima, and thus conventional optimization algorithm may fail
o find the globally best solution. Therefore, more advanced
ptimization techniques, such as genetic algorithms, may be
eeded.

In principle, the presented RSM framework is applicable to
eneral “processes” in diverse fields of science, engineering, man-
gement, among others, where empirical models are developed
rom designed experiments to facilitate the rational design and
ptimization of the processes. Currently, we are investigating
mproved formulations of the objective function for optimization,
nd the extension of the methodology to simultaneously optimize
ultiple objectives functions [52,53], or even objective function
hich is a time trajectory itself (e.g. conversion curve) [54]. Fur-

hermore, in real industrial applications, the process factors and
atalysts may not be as closely controlled as in the laboratories,
nd thus process variability may become significant. The combi-
ation of robust design and optimization methodology within the
P-based RSM framework is also under study. Finally, given the var-

ous advanced models being applied for process optimization (such
s ANN, SVM and GP), it is valuable to conduct a rigorous compar-
tive study to assess the prediction capability of these methods,
hich will provide a guidance for future study on model-based
rocess design.
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51] J. Quiñonero-Candela, C.E. Rasmussen, F. Sinz, O. Bousquet, B. Schölkopf, Eval-
uating predictive uncertainty challenge, in: J. Quiñonero-Candela, et al. (Eds.),
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